Identifying decomposition products in extracts of cellular metabolites

Anal Biochem. 2006 Nov 15;358(2):273-80. doi: 10.1016/j.ab.2006.07.038. Epub 2006 Aug 14.


Most methods of analyzing intracellular metabolites require extraction of metabolites from the cells. A concern in these methods is underestimation of metabolite levels due to incomplete extraction. In comparing extraction methods, then, it would seem that the best method for extracting a particular metabolite is the one that gives the largest yield. In extracting Escherichia coli with different methanol:water mixtures, we observed that >or=50% water gave an increased yield of nucleosides and bases compared with <or=20% water, as determined by liquid chromatography-tandem mass spectrometry analysis of the resulting extracts. Spiking of the extracts with isotope-labeled nucleotides revealed, however, that the high yield of nucleosides and bases occurred due to decomposition of nucleotides in the water-rich condition, not due to good extraction. Spiking combined with isotope labeling provides a general approach to detecting decomposition products in extracts of cellular metabolites. For extraction of E. coli with methanol:water, cold temperature and a high methanol fraction minimize artifacts due to metabolite decomposition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromatography, Liquid
  • Escherichia coli / metabolism*
  • Mass Spectrometry
  • Methanol / chemistry
  • Reference Standards
  • Water / chemistry


  • Water
  • Methanol