Polarizable contributions to the surface tension of liquid water

J Chem Phys. 2006 Sep 7;125(9):094712. doi: 10.1063/1.2345063.

Abstract

Surface tension, gamma, strongly affects interfacial properties in fluids. The degree to which polarizability affects gamma in water is thus far not well established. To address this situation, we carry out molecular dynamics simulations to study the interfacial forces acting on a slab of liquid water surrounded by vacuum using the Gaussian charge polarizable (GCP) model at 298.15 K. The GCP model incorporates both a fixed dipole due to Gaussian distributed charges and a polarizable dipole. We find a well-defined bulklike region forms with a width of approximately 31 A. The average density of the bulklike region agrees with the experimental value of 0.997 g/cm3. However, we find that the orientation of the molecules in the bulklike region is strongly influenced by the interfaces, even at a distance five molecular diameters from the interface. Specifically, the orientations of both the permanent and induced dipoles show a preferred orientation parallel to the interface. Near the interface, the preferred orientation of the dipoles becomes more pronounced and the average magnitude of the induced dipoles decreases monotonically. To quantify the degree to which molecular orientation affects gamma, we calculate the contributions to gamma from permanent dipolar interactions, induced dipolar interactions, and dispersion forces. We find that the induced dipole interactions and the permanent dipole interactions, as well as the cross interactions, have positive contributions to gamma, and therefore contribute stability to the interface. The repulsive core interactions result in a negative contribution to gamma, which nearly cancels the positive contributions from the dipoles. The large negative core contributions to gamma are the result of small oxygen-oxygen separation between molecules. These small separations occur due to the strong attractions between hydrogen and oxygen atoms. The final predicted value for gamma (68.65 m/Nm) shows a deviation of approximately 4% of the experimental value of 71.972 m/Nm. The inclusion of polarization is critical for this model to produce an accurate value.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.