Latency of vestibular responses of pursuit neurons in the caudal frontal eye fields to whole body rotation

Exp Brain Res. 2007 Mar;177(3):400-10. doi: 10.1007/s00221-006-0682-5.

Abstract

The smooth pursuit system and the vestibular system interact to keep the retinal target image on the fovea by matching the eye velocity in space to target velocity during head and/or whole body movement. The caudal part of the frontal eye fields (FEF) in the fundus of the arcuate sulcus contains pursuit-related neurons and the majority of them respond to vestibular stimulation induced by whole body movement. To understand the role of FEF pursuit neurons in the interaction of vestibular and pursuit signals, we examined the latency and time course of discharge modulation to horizontal whole body rotation during different vestibular task conditions in head-stabilized monkeys. Pursuit neurons with horizontal preferred directions were selected, and they were classified either as gaze-velocity neurons or eye/head-velocity neurons based on the previous criteria. Responses of these neurons to whole body step-rotation at 20 degrees/s were examined during cancellation of the vestibulo-ocular reflex (VOR), VOR x1, and during chair steps in complete darkness without a target (VORd). The majority of pursuit neurons tested (approximately 70%) responded during VORd with latencies <80 ms. These initial responses were basically similar in the three vestibular task conditions. The shortest latency was 20 ms and the modal value was 24 ms. These responses were also similar between gaze-velocity neurons and eye/head-velocity neurons, indicating that the initial responses (<80 ms) were vestibular responses induced by semicircular canal inputs. During VOR cancellation and x1, discharge of the two groups of neurons diverged at approximately 90 ms following the onset of chair rotation, consistent with the latencies associated with smooth pursuit. The shortest latency to the onset of target motion during smooth pursuit was 80 ms and the modal value was 95 ms. The time course of discharge rate difference of the two groups of neurons between VOR cancellation and x1 was predicted by the discharge modulation associated with smooth pursuit. These results provide further support for the involvement of the caudal FEF in integration of vestibular inputs and pursuit signals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / cytology
  • Eye Movements / physiology*
  • Macaca fascicularis
  • Male
  • Neurons / physiology*
  • Photic Stimulation / methods
  • Reaction Time / physiology*
  • Reflex, Vestibulo-Ocular*
  • Rotation*
  • Visual Fields / physiology*