A guest-free germanium clathrate

Nature. 2006 Sep 21;443(7109):320-3. doi: 10.1038/nature05145.

Abstract

The challenges associated with synthesizing expanded semiconductor frameworks with cage-like crystal structures continue to be of interest. Filled low-density germanium and silicon framework structures have distinct properties that address important issues in thermoelectric phonon glass-electron crystals, superconductivity and the possibility of Kondo insulators. Interest in empty framework structures of silicon and germanium is motivated by their predicted wide optical bandgaps of the same magnitude as quantum dots and porous silicon, making them and their alloys promising materials for silicon-based optoelectronic devices. Although almost-empty Na(1-x)Si136 has already been reported, the synthesis of guest-free germanium clathrate has so far been unsuccessful. Here we report the high-yield synthesis and characteristics of germanium with the empty clathrate-II structure through the oxidation of Zintl anions in ionic liquids under ambient conditions. The approach demonstrates the potential of ionic liquids as media for the reactions of polar intermetallic phases.