We present an in situ method for the selective manipulation of DNA-tagged nano-objects such as vesicles or gold colloids in aqueous solution, at neutral pH. The method makes use of the photosensitizer concept found in photodynamic therapy. Here, single-stranded DNA is immobilized onto a surface via the biotin/streptavidin linkage. If the streptavidin is fluorescently labeled, reactive species will be created during laser-induced photobleaching of the label. These reactive species can then completely or partly suppress the DNA hybridization and cause the removal of the streptavidin. The technique thereby enables a dynamic on-off control over surface density of immobilized DNA-tagged nano-objects. Furthermore, combining this in situ manipulation of DNA with prepatterning of single-stranded DNA in the micro and later in the nano range provides a means for the dynamic patterning required for applications in biosensing and nanotechnology.