The multitalented microbial sensory rhodopsins

Trends Microbiol. 2006 Nov;14(11):480-7. doi: 10.1016/j.tim.2006.09.005. Epub 2006 Sep 26.

Abstract

Sensory rhodopsins are photoactive, membrane-embedded seven-transmembrane helix receptors that use retinal as a chromophore. They are widespread in the microbial world in each of the three domains of life: Archaea, Bacteria and Eukarya. A striking characteristic of these photoreceptors is their different modes of signaling in different organisms, including interaction with other membrane proteins, interaction with cytoplasmic transducers and light-controlled Ca(2+) channel activity. More than two decades since the discovery of the first sensory rhodopsins in the archaeon Halobacterium salinarum, genome projects have revealed a widespread presence of homologous photosensors. New work on cyanobacteria, algae, fungi and marine proteobacteria is revealing how evolution has modified the common design of these proteins to produce a remarkably rich diversity in their signaling biochemistry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Models, Biological
  • Models, Molecular
  • Protein Conformation
  • Rhodopsins, Microbial / chemistry
  • Rhodopsins, Microbial / physiology*
  • Sensory Rhodopsins / chemistry
  • Sensory Rhodopsins / physiology*
  • Signal Transduction / physiology*

Substances

  • Rhodopsins, Microbial
  • Sensory Rhodopsins