Cerebral processing of linguistic and emotional prosody: fMRI studies

Prog Brain Res. 2006;156:249-68. doi: 10.1016/S0079-6123(06)56013-3.


During acoustic communication in humans, information about a speaker's emotional state is predominantly conveyed by modulation of the tone of voice (emotional or affective prosody). Based on lesion data, a right hemisphere superiority for cerebral processing of emotional prosody has been assumed. However, the available clinical studies do not yet provide a coherent picture with respect to interhemispheric lateralization effects of prosody recognition and intrahemispheric localization of the respective brain regions. To further delineate the cerebral network engaged in the perception of emotional tone, a series of experiments was carried out based upon functional magnetic resonance imaging (fMRI). The findings obtained from these investigations allow for the separation of three successive processing stages during recognition of emotional prosody: (1) extraction of suprasegmental acoustic information predominantly subserved by right-sided primary and higher order acoustic regions; (2) representation of meaningful suprasegmental acoustic sequences within posterior aspects of the right superior temporal sulcus; (3) explicit evaluation of emotional prosody at the level of the bilateral inferior frontal cortex. Moreover, implicit processing of affective intonation seems to be bound to subcortical regions mediating automatic induction of specific emotional reactions such as activation of the amygdala in response to fearful stimuli. As concerns lower level processing of the underlying suprasegmental acoustic cues, linguistic and emotional prosody seem to share the same right hemisphere neural resources. Explicit judgment of linguistic aspects of speech prosody, however, appears to be linked to left-sided language areas whereas bilateral orbitofrontal cortex has been found involved in explicit evaluation of emotional prosody. These differences in hemispheric lateralization effects might explain that specific impairments in nonverbal emotional communication subsequent to focal brain lesions are relatively rare clinical observations as compared to the more frequent aphasic disorders.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Brain / physiology
  • Expressed Emotion / physiology*
  • Humans
  • Linguistics*
  • Magnetic Resonance Imaging*
  • Speech / physiology*
  • Speech Perception / physiology*