Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 1;66(19):9617-24.
doi: 10.1158/0008-5472.CAN-06-0217.

Targeting the lymphotoxin-beta receptor with agonist antibodies as a potential cancer therapy

Affiliations

Targeting the lymphotoxin-beta receptor with agonist antibodies as a potential cancer therapy

Matvey Lukashev et al. Cancer Res. .

Abstract

The lymphotoxin-beta receptor (LT beta R) is a tumor necrosis factor receptor family member critical for the development and maintenance of various lymphoid microenvironments. Herein, we show that agonistic anti-LT beta R monoclonal antibody (mAb) CBE11 inhibited tumor growth in xenograft models and potentiated tumor responses to chemotherapeutic agents. In a syngeneic colon carcinoma tumor model, treatment of the tumor-bearing mice with an agonistic antibody against murine LT beta R caused increased lymphocyte infiltration and necrosis of the tumor. A pattern of differential gene expression predictive of cellular and xenograft response to LT beta R activation was identified in a panel of colon carcinoma cell lines and when applied to a panel of clinical colorectal tumor samples indicated 35% likelihood a tumor response to CBE11. Consistent with this estimate, CBE11 decreased tumor size and/or improved long-term animal survival with two of six independent orthotopic xenografts prepared from surgical colorectal carcinoma samples. Targeting of LT beta R with agonistic mAbs offers a novel approach to the treatment of colorectal and potentially other types of cancers.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms