Quenching of superoxide radicals by green fluorescent protein

Biochim Biophys Acta. 2006 Nov;1760(11):1690-5. doi: 10.1016/j.bbagen.2006.08.014. Epub 2006 Aug 25.

Abstract

Green fluorescent proteins (GFP) are widely used in vivo molecular markers. These proteins are particularly resistant, and maintain function, under a variety of cellular conditions such as pH extremes and elevated temperatures. Green fluorescent proteins are also abundant in several groups of marine invertebrates including reef-forming corals. While molecular oxygen is required for the post-translational maturation of the protein, mature GFPs are found in corals where hyperoxia and reactive oxygen species (ROS) occur due to the photosynthetic activity of algal symbionts. In vitro spin trapping electron paramagnetic resonance and spectrophotometric assays of superoxide dismutase (SOD)-like enzyme activity show that wild type GFP from the hydromedusa, Aequorea victoria, quenches superoxide radicals (O2*-)) and exhibits SOD-like activity by competing with cytochrome c for reaction with O2*-. When exposed to high amounts of O2*- the SOD-like activity and protein structure of GFP are altered without significant changes to the fluorescent properties of the protein. Because of the distribution of fluorescent proteins in both the epithelial and gastrodermal cells of reef-forming corals we propose that GFP, and possibly other fluorescent proteins, can provide supplementary antioxidant protection.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa / cytology
  • Electron Spin Resonance Spectroscopy
  • Electrophoresis, Capillary
  • Green Fluorescent Proteins / chemistry*
  • Green Fluorescent Proteins / metabolism
  • Spectrometry, Fluorescence
  • Superoxide Dismutase / metabolism
  • Superoxides / chemistry*

Substances

  • Superoxides
  • Green Fluorescent Proteins
  • Superoxide Dismutase