Rationale: Dopamine neurotransmission has long been known to exert a powerful influence over the vigor, strength, or rate of responding. However, there exists no clear understanding of the computational foundation for this effect; predominant accounts of dopamine's computational function focus on a role for phasic dopamine in controlling the discrete selection between different actions and have nothing to say about response vigor or indeed the free-operant tasks in which it is typically measured.
Objectives: We seek to accommodate free-operant behavioral tasks within the realm of models of optimal control and thereby capture how dopaminergic and motivational manipulations affect response vigor.
Methods: We construct an average reward reinforcement learning model in which subjects choose both which action to perform and also the latency with which to perform it. Optimal control balances the costs of acting quickly against the benefits of getting reward earlier and thereby chooses a best response latency.
Results: In this framework, the long-run average rate of reward plays a key role as an opportunity cost and mediates motivational influences on rates and vigor of responding. We review evidence suggesting that the average reward rate is reported by tonic levels of dopamine putatively in the nucleus accumbens.
Conclusions: Our extension of reinforcement learning models to free-operant tasks unites psychologically and computationally inspired ideas about the role of tonic dopamine in striatum, explaining from a normative point of view why higher levels of dopamine might be associated with more vigorous responding.