Bombesin receptors as a novel anti-anxiety therapeutic target: BB1 receptor actions on anxiety through alterations of serotonin activity

J Neurosci. 2006 Oct 11;26(41):10387-96. doi: 10.1523/JNEUROSCI.1219-06.2006.

Abstract

The effects of PD 176252 [3-(1H-indol-3-yl)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[3-(nitro-phenyl)ureido]propionamide], a nonpeptide bombesin (BB) BB1/BB2 receptor antagonist, were assessed in rats using several ethologically relevant tests of anxiety. Consistent with a role for the bombesin family of peptides in subserving anxiety behaviors, the antagonist increased social interaction (3.75 and 7.5 mg/kg, i.p.), dose-dependently attenuated the number of vocalizations emitted by guinea pig pups separated from their mother (1-30 mg/kg, i.p.), reduced latency to approach a palatable snack in an anxiogenic (unfamiliar) environment, and reduced the fear-potentiated startle response (5 and 10 mg/kg, i.p., and 100-200 ng per rat, i.c.v.). When administered directly to the dorsal raphé nucleus (DRN), PD 176252 (20-500 ng) increased social interaction under aversive conditions, as did the 5-HT1A receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (50 ng). Furthermore, intra-DRN microinfusion of the peptide antagonist (PD 176252) suppressed, whereas its agonist [neuromedin B (NMB)-30] promoted, the in vivo release of 5-HT in the ventral hippocampus. In parallel, the suppressed social interaction elicited by intra-DRN administration of NMB was attenuated by a systemically administered 5-HT2C (but not 5-HT1A) receptor antagonist. Together, these findings suggest that endogenous BB-like peptides at the DRN evoke the release of 5-HT from the limbic nerve terminals originating from the raphé, specifically at the ventral hippocampus, resulting in anxiogenesis. The finding that this action was attenuated by BB receptor (BB1 and/or BB2) antagonists suggests that these compounds may represent a novel class of anxiolytic agents.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Anxiety Agents / administration & dosage*
  • Anti-Anxiety Agents / metabolism
  • Anxiety / drug therapy
  • Anxiety / metabolism*
  • Drug Delivery Systems / methods*
  • Female
  • Guinea Pigs
  • Indoles / pharmacology
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Bombesin / antagonists & inhibitors*
  • Receptors, Bombesin / metabolism*
  • Serotonin / metabolism*
  • Serotonin / physiology

Substances

  • Anti-Anxiety Agents
  • Indoles
  • Receptors, Bombesin
  • Serotonin
  • PD 176252