Electronic structure of C60 on Au(887)

J Chem Phys. 2006 Oct 14;125(14):144719. doi: 10.1063/1.2354082.


We present an analysis of the electronic structure of C60 adsorbed on a vicinal Au(111) surface at different fullerene coverages using photoemission, x-ray absorption, and scanning tunneling microscopy/spectroscopy (STS). STS provides a straightforward determination of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels with respect to the Fermi energy. At C60 coverages of 0.5 and 1 ML a 2.7 eV wide HOMO-LUMO gap is found. The near-edge x-ray absorption fine structure (NEXAFS) spectrum for the 0.5 ML C60 nanomesh structure displays a significant intensity at the low energy side of the LUMO exciton peak, which is explained as due to absorption into HOMO-LUMO gap states localized at individual C60 cluster edges. From 0.5 to 1 ML we observe a rigid shift of the HOMO-LUMO peaks in the STS spectra and an almost complete quenching of the gap states feature in NEXAFS.