Origin of functional diversity among tetrameric voltage-gated channels

Proteins. 2007 Jan 1;66(1):136-46. doi: 10.1002/prot.21187.

Abstract

The aim of the present work is to relate functional differences of voltage-gated K(+) (K(v)), hyperpolarization-activated cyclic nucleotide-gated (HCN), and cyclic nucleotide gated (CNG) channels to differences in their amino acid sequences. By means of combined bioinformatic sequence analyses and homology modelling, we suggest that: (1) CNG channels are less voltage-dependent than K(v) channels since the charge of their voltage sensor, the S4 helix, is lower than that of K(v) channels and because of the presence of a conserved proline in the S4-S5 linker, which is quite likely to uncouple S4 from S5 and S6. (2) In HCN channels, S4 features a higher net positive charge with respect to K(v) channels and an extensive network of hydrophobic residues, which is quite likely to provide a tight coupling among S4 and the neighboring helices. We suggest insights on the gating of HCN channels and the reasons why they open with membrane hyperpolarization and with a significantly longer time constant with respect to other channels.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Animals
  • Crystallography, X-Ray
  • Cyclic Nucleotide-Gated Cation Channels
  • Humans
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Ion Channels / chemistry*
  • Ion Channels / physiology
  • Models, Biological
  • Models, Molecular
  • Molecular Sequence Data
  • Potassium Channels
  • Potassium Channels, Voltage-Gated / chemistry*
  • Potassium Channels, Voltage-Gated / physiology
  • Protein Structure, Tertiary
  • Sequence Alignment
  • Structure-Activity Relationship

Substances

  • Cyclic Nucleotide-Gated Cation Channels
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Ion Channels
  • Potassium Channels
  • Potassium Channels, Voltage-Gated