The ER-peroxisome connection in plants: development of the "ER semi-autonomous peroxisome maturation and replication" model for plant peroxisome biogenesis

Biochim Biophys Acta. 2006 Dec;1763(12):1655-68. doi: 10.1016/j.bbamcr.2006.09.011. Epub 2006 Sep 14.

Abstract

The perceived role of the ER in the biogenesis of plant peroxisomes has evolved significantly from the original "ER vesiculation" model, which portrayed co-translational import of proteins into peroxisomes originating from the ER, to the "ER semi-autonomous peroxisome" model wherein membrane lipids and post-translationally acquired peroxisomal membrane proteins (PMPs) were derived from the ER. Results from more recent studies of various plant PMPs including ascorbate peroxidase, PEX10 and PEX16, as well as a viral replication protein, have since led to the formulation of a more elaborate "ER semi-autonomous peroxisome maturation and replication" model. Herein we review these results in the context of this newly proposed model and its predecessor models. We discuss also key distinct features of the new model pertaining to its central premise that the ER defines the semi-autonomous maturation (maintenance/assembly/differentiation) and duplication (division) features of specialized classes of pre-existing plant peroxisomes. This model also includes a novel peroxisome-to-ER retrograde sorting pathway that may serve as a constitutive protein retrieval/regulatory system. In addition, new plant peroxisomes are envisaged to arise primarily by duplication of the pre-existing peroxisomes that receive essential membrane components from the ER.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Endoplasmic Reticulum / physiology*
  • Models, Biological*
  • Peroxisomes / physiology*
  • Plants / metabolism*
  • Protein Transport