Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity
- PMID: 17055440
- DOI: 10.1016/j.cell.2006.08.045
Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity
Abstract
Many neural progenitors, including Drosophila mushroom body (MB) and projection neuron (PN) neuroblasts, sequentially give rise to different subtypes of neurons throughout development. We identified a novel BTB-zinc finger protein, named Chinmo (Chronologically inappropriate morphogenesis), that governs neuronal temporal identity during postembryonic development of the Drosophila brain. In both MB and PN lineages, loss of Chinmo autonomously causes early-born neurons to adopt the fates of late-born neurons from the same lineages. Interestingly, primarily due to a posttranscriptional control, MB neurons born at early developmental stages contain more abundant Chinmo than their later-born siblings. Further, the temporal identity of MB progeny can be transformed toward earlier or later fates by reducing or increasing Chinmo levels, respectively. Taken together, we suggest that a temporal gradient of Chinmo (Chinmo(high) --> Chinmo(low)) helps specify distinct birth order-dependent cell fates in an extended neuronal lineage.
Comment in
-
Chinmo and neuroblast temporal identity.Cell. 2006 Oct 20;127(2):254-6. doi: 10.1016/j.cell.2006.10.008. Cell. 2006. PMID: 17055425
Similar articles
-
Chinmo and neuroblast temporal identity.Cell. 2006 Oct 20;127(2):254-6. doi: 10.1016/j.cell.2006.10.008. Cell. 2006. PMID: 17055425
-
Steroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo.Curr Biol. 2017 Oct 9;27(19):3017-3024.e4. doi: 10.1016/j.cub.2017.08.037. Epub 2017 Sep 28. Curr Biol. 2017. PMID: 28966087
-
Roles of Drosophila Kruppel-homolog 1 in neuronal morphogenesis.Dev Neurobiol. 2007 Oct;67(12):1614-26. doi: 10.1002/dneu.20537. Dev Neurobiol. 2007. PMID: 17562531
-
Neuronal temporal identity in post-embryonic Drosophila brain.Trends Neurosci. 2007 Oct;30(10):520-6. doi: 10.1016/j.tins.2007.07.003. Epub 2007 Sep 6. Trends Neurosci. 2007. PMID: 17825435 Review.
-
Structural brain mutants: mushroom body defect (mud): a case study.J Neurogenet. 2009;23(1-2):42-7. doi: 10.1080/01677060802471700. Epub 2008 Dec 23. J Neurogenet. 2009. PMID: 19107630 Review.
Cited by
-
Neurogenesis From Embryo to Adult - Lessons From Flies and Mice.Front Cell Dev Biol. 2020 Jun 30;8:533. doi: 10.3389/fcell.2020.00533. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 32695783 Free PMC article. Review.
-
FACS purification of Drosophila larval neuroblasts for next-generation sequencing.Nat Protoc. 2013 Jun;8(6):1088-1099. doi: 10.1038/nprot.2013.062. Epub 2013 May 9. Nat Protoc. 2013. PMID: 23660757 Free PMC article.
-
Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map.PLoS Biol. 2009 Sep;7(9):e1000199. doi: 10.1371/journal.pbio.1000199. Epub 2009 Sep 22. PLoS Biol. 2009. PMID: 19771147 Free PMC article.
-
Spatiotemporally controlled genetic perturbation for efficient large-scale studies of cell non-autonomous effects.Elife. 2018 Nov 27;7:e38393. doi: 10.7554/eLife.38393. Elife. 2018. PMID: 30479273 Free PMC article.
-
Drosophila septin interacting protein 1 regulates neurogenesis in the early developing larval brain.Sci Rep. 2022 Jan 7;12(1):292. doi: 10.1038/s41598-021-04474-3. Sci Rep. 2022. PMID: 34997175 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
