Kinetic mechanism of myosinV-S1 using a new fluorescent ATP analogue

Biochemistry. 2006 Oct 31;45(43):13035-45. doi: 10.1021/bi060712n.


We have used a new fluorescent ATP analogue, 3'-(7-diethylaminocoumarin-3-carbonylamino)-3'-deoxyadenosine-5'-triphosphate (deac-aminoATP), to study the ATP hydrolysis mechanism of the single headed myosinV-S1. Our study demonstrates that deac-aminoATP is an excellent substrate for these studies. Although the deac-amino nucleotides have a low quantum yield in free solution, there is a very large increase in fluorescence emission ( approximately 20-fold) upon binding to the myosinV active site. The fluorescence emission intensity is independent of the hydrolysis state of the nucleotide bound to myosinV-S1. The very good signal-to-noise ratio that is obtained with deac-amino nucleotides makes them excellent substrates for studying expressed proteins that can only be isolated in small quantities. The combination of the fast rate of binding and the favorable signal-to-noise ratio also allows deac-nucleotides to be used in chase experiments to determine the kinetics of ADP and Pi dissociation from actomyosin-ADP-Pi. Although phosphate dissociation from actomyosinV-ADP-Pi does not itself produce a fluorescence signal, it produces a lag in the signal for deac-aminoADP dissociation. The lag provides direct evidence that the principal pathway of product dissociation from actomyosinV-ADP-Pi is an ordered mechanism in which phosphate precedes ADP. Although the mechanism of hydrolysis of deac-aminoATP by (acto)myosinV-S1 is qualitatively similar to the ATP hydrolysis mechanism, there are significant differences in some of the rate constants. Deac-aminoATP binds 3-fold faster to myosinV-S1, and the rate of deac-aminoADP dissociation from actomyosinV-S1 is 20-fold slower. Deac-aminoATP supports motility by myosinV-HMM on actin at a rate consistent with the slower rate of deac-aminoADP dissociation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate / metabolism
  • Adenosine Triphosphate / analogs & derivatives
  • Adenosine Triphosphate / metabolism*
  • Animals
  • Hydrolysis
  • Kinetics
  • Mice
  • Myosin Subfragments / metabolism*
  • Myosins / metabolism*
  • Phosphates / metabolism
  • Spectrometry, Fluorescence / methods


  • Myosin Subfragments
  • Phosphates
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Myosins