Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients

Kidney Int. 2007 Jan;71(2):146-52. doi: 10.1038/ Epub 2006 Oct 25.


Deranged protein metabolism is known to complicate uremia. Insulin resistance is evident in chronic hemodialysis (CHD) patients. We hypothesized that the degree of insulin resistance would predict protein catabolism in non-diabetic CHD patients. We examined the relationship between Homeostasis Model Assessment (HOMA) and fasting whole-body and skeletal muscle protein turnover in 18 non-diabetic CHD patients using primed-constant infusions of L-(1-(13)C) leucine and L-(ring-(2)H(5)) phenylalanine. Mean+/-s.d. fasting glucose and body mass index were 80.6+/-9.8 mg/dl and 25.4+/-4.4 kg/m(2), respectively. Median (interquartile range) HOMA was 1.6 (1.4, 3.9). Mean+/-s.e.m. skeletal muscle protein synthesis, breakdown, and net balance were 89.57+/-11.67, 97.02+/-13.3, and -7.44+/-7.14 microg/100 ml/min, respectively. Using linear regression, a positive correlation was observed between HOMA and skeletal muscle protein synthesis (R(2)=0.28; P=0.024), and breakdown (R(2)=0.49; P=0.001). An inverse association between net skeletal muscle protein balance and HOMA was also noted (R(2)=0.20; P=0.066). After adjustment for C-reactive protein, only the relationship between HOMA and skeletal muscle protein breakdown persisted (R(2)=0.49; P=0.006). There were no significant associations between components of whole-body protein turnover and HOMA. This study demonstrates that insulin resistance is evident in non-diabetic dialysis patients, is associated with skeletal muscle protein breakdown, and represents a novel target for intervention in uremic wasting.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Female
  • Homeostasis
  • Humans
  • Insulin Resistance*
  • Kidney Failure, Chronic / complications
  • Kidney Failure, Chronic / metabolism*
  • Kidney Failure, Chronic / therapy
  • Male
  • Middle Aged
  • Models, Biological
  • Muscle Proteins / analysis
  • Muscle Proteins / metabolism*
  • Muscle, Skeletal / chemistry
  • Muscle, Skeletal / metabolism*
  • Renal Dialysis*


  • Muscle Proteins