Random walks for image segmentation
- PMID: 17063682
- DOI: 10.1109/TPAMI.2006.233
Random walks for image segmentation
Abstract
A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with user-defined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each unlabeled pixel will first reach one of the prelabeled pixels. By assigning each pixel to the label for which the greatest probability is calculated, a high-quality image segmentation may be obtained. Theoretical properties of this algorithm are developed along with the corresponding connections to discrete potential theory and electrical circuits. This algorithm is formulated in discrete space (i.e., on a graph) using combinatorial analogues of standard operators and principles from continuous potential theory, allowing it to be applied in arbitrary dimension on arbitrary graphs.
Similar articles
-
Isoperimetric graph partitioning for image segmentation.IEEE Trans Pattern Anal Mach Intell. 2006 Mar;28(3):469-75. doi: 10.1109/TPAMI.2006.57. IEEE Trans Pattern Anal Mach Intell. 2006. PMID: 16526432
-
Toward objective evaluation of image segmentation algorithms.IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):929-44. doi: 10.1109/TPAMI.2007.1046. IEEE Trans Pattern Anal Mach Intell. 2007. PMID: 17431294
-
Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor.IEEE Trans Pattern Anal Mach Intell. 2005 Feb;27(2):278-81. doi: 10.1109/TPAMI.2005.38. IEEE Trans Pattern Anal Mach Intell. 2005. PMID: 15688565
-
[Medical image segmentation techniques].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006 Aug;23(4):891-4. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006. PMID: 17002132 Review. Chinese.
-
Discrete-time random walks on diagrams (graphs) with cycles.Proc Natl Acad Sci U S A. 1988 Aug;85(15):5345-9. doi: 10.1073/pnas.85.15.5345. Proc Natl Acad Sci U S A. 1988. PMID: 3041408 Free PMC article. Review.
Cited by
-
Semi-automatic segmentation of brain tumors using population and individual information.J Digit Imaging. 2013 Aug;26(4):786-96. doi: 10.1007/s10278-012-9568-1. J Digit Imaging. 2013. PMID: 23319111 Free PMC article.
-
Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images.PLoS One. 2013;8(2):e57105. doi: 10.1371/journal.pone.0057105. Epub 2013 Feb 19. PLoS One. 2013. PMID: 23431398 Free PMC article.
-
Ultrasonic image analysis and image-guided interventions.Interface Focus. 2011 Aug 6;1(4):673-85. doi: 10.1098/rsfs.2011.0025. Epub 2011 Jun 15. Interface Focus. 2011. PMID: 22866237 Free PMC article.
-
Primary lung tumor segmentation from PET-CT volumes with spatial-topological constraint.Int J Comput Assist Radiol Surg. 2016 Jan;11(1):19-29. doi: 10.1007/s11548-015-1231-0. Epub 2015 Jul 2. Int J Comput Assist Radiol Surg. 2016. PMID: 26133651
-
A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation.J Imaging. 2021 Dec 7;7(12):267. doi: 10.3390/jimaging7120267. J Imaging. 2021. PMID: 34940734 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
