Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis

NMR Biomed. 2006 Nov;19(7):822-54. doi: 10.1002/nbm.1063.


Magnetic resonance imaging (MRI) and quantitative image analysis technology has recently started to generate a great wealth of quantitative information on articular cartilage and bone physiology, pathophysiology and degenerative changes in osteoarthritis. This paper reviews semiquantitative scoring of changes of articular tissues (e.g. WORMS = whole-organ MRI scoring or KOSS = knee osteoarthritis scoring system), quantification of cartilage morphology (e.g. volume and thickness), quantitative measurements of cartilage composition (e.g. T2, T1rho, T1Gd = dGEMRIC index) and quantitative measurement of bone structure (e.g. app. BV/TV, app. TbTh, app. Tb.N, app. Tb.Sp) in osteoarthritis. For each of these fields we describe the hardware and MRI sequences available, the image analysis systems and techniques used to derive semiquantitative and quantitative parameters, the technical accuracy and precision of the measurements reported to date and current results from cross-sectional and longitudinal studies in osteoarthritis. Moreover, the paper summarizes studies that have compared MRI-based measurements with radiography and discusses future perspectives of quantitative MRI in osteoarthritis. In summary, the above methodologies show great promise for elucidating the pathophysiology of various tissues and identifying risk factors of osteoarthritis, for developing structure modifying drugs (DMOADs) and for combating osteoarthritis with new and better therapy.

Publication types

  • Review

MeSH terms

  • Animals
  • Bone and Bones / pathology*
  • Cartilage / pathology*
  • Humans
  • Image Enhancement / instrumentation
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / instrumentation*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / instrumentation*
  • Magnetic Resonance Imaging / methods*
  • Magnetic Resonance Imaging / trends
  • Osteoarthritis / diagnosis*