Evolution under relaxed sexual conflict in the bulb mite Rhizoglyphus robini

Evolution. 2006 Sep;60(9):1868-73. doi: 10.1554/06-060.1.


The experimental evolution under different levels of sexual conflict have been used to demonstrate antagonistic coevolution in muscids, but among other taxa a similar approach has not been employed. Here, we describe the results of 37 generations of evolution under either experimentally enforced monogamy or polygamy in the bulb mite Rhizoglyphus robini. Three replicates were maintained for each treatment. Monogamy makes male and female interests congruent; thus selection is expected to decrease harmfulness of males to their partners. Our results were consistent with this prediction in that females from monogamous lines achieved lower fecundity when housed with males from polygamous lines. Fecundity of polygamous females was not affected by mating system under which their partners evolved, which suggests that they were more resistant to male-induced harm. As predicted by the antagonistic coevolution hypothesis, the decrease in harmfulness of monogamous males was accompanied by a decline in reproductive competitiveness. In contrast, female fecundity and embryonic viability, which were not expected to be correlated with male harmfulness, did not differ between monogamous and polygamous lines. None of the fitness components assayed differed between individuals obtained from crosses between parents from the same line and those obtained from crosses between parents from different lines within the same mating system. This indicates that inbreeding depression did not confound our results. However, interpretation of our results is complicated by the fact that both males and females from monogamous lines evolved smaller body size compared to individuals from polygamous lines. Although a decrease in reproductive performance of males from monogamous lines was still significant when body size was taken into account, we were not able to separate the effects of male body size and mating system in their influence on fecundity of their female partners.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution*
  • Body Size
  • Female
  • Fertility / physiology
  • Male
  • Mites / physiology*
  • Sexual Behavior, Animal / physiology*