Fluorescent analysis of translesion DNA synthesis by using a novel, non-natural nucleotide analogue

Chembiochem. 2006 Dec;7(12):1990-7. doi: 10.1002/cbic.200600128.


The replication of damaged DNA is a promutagenic process that can lead to disease development. This report evaluates the dynamics of nucleotide incorporation opposite an abasic site, a commonly formed DNA lesion, by using two fluorescent nucleotide analogues, 2-aminopurine deoxyribose triphosphate (2-APTP) and 5-phenylindole deoxyribose triphosphate (5-PhITP). In both cases, the kinetics of incorporation were compared by using a 32P-radiolabel extension assay versus a fluorescence-quenching assay. Although 2-APTP is efficiently incorporated opposite a templating nucleobase (thymine), the kinetics for incorporation opposite an abasic site are significantly slower. The lower catalytic efficiency hinders its use as a probe to study translesion DNA synthesis. In contrast, the rate constant for the incorporation of 5-PhITP opposite the DNA lesion is 100-fold faster than that for 2-APTP. Nearly identical kinetic parameters are obtained from fluorescence quenching or the 32P-radiolabel assay. Surprisingly, distinct differences in the kinetics of 5-PhITP incorporation opposite the DNA lesion are detected when using either bacteriophage T4 DNA polymerase or the Escherichia coli Klenow fragment. These differences suggest that the dynamics of nucleotide incorporation opposite an abasic site are polymerase-dependent. Collectively, these data indicate that 5-PhITP can be used to perform real-time analyses of translesion DNA synthesis as well as to functionally probe differences in polymerase function.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • DNA / chemical synthesis*
  • DNA / chemistry*
  • DNA Repair*
  • DNA-Directed DNA Polymerase / chemistry
  • Fluorescent Dyes / chemistry*
  • Kinetics
  • Molecular Structure
  • Nucleotides / chemistry*
  • Purine Nucleotides / chemistry*


  • 2-aminopurine triphosphate
  • 5-phenylindole deoxyribose triphosphate
  • Fluorescent Dyes
  • Nucleotides
  • Purine Nucleotides
  • DNA
  • DNA-Directed DNA Polymerase