Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors
- PMID: 17101441
- PMCID: PMC1815300
- DOI: 10.1016/j.ymeth.2006.07.028
Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors
Abstract
Mass spectrometry-based approaches are commonly used to identify proteins from multiprotein complexes, typically with the goal of identifying new complex members or identifying post-translational modifications. However, with the recent demonstration that spectral counting is a powerful quantitative proteomic approach, the analysis of multiprotein complexes by mass spectrometry can be reconsidered in certain cases. Using the chromatography-based approach named multidimensional protein identification technology, multiprotein complexes may be analyzed quantitatively using the normalized spectral abundance factor that allows comparison of multiple independent analyses of samples. This study describes an approach to visualize multiprotein complex datasets that provides structure function information that is superior to tabular lists of data. In this method review, we describe a reanalysis of the Rpd3/Sin3 small and large histone deacetylase complexes previously described in a tabular form to demonstrate the normalized spectral abundance factor approach.
Figures
Similar articles
-
Proteomic approaches to the analysis of multiprotein signaling complexes.Proteomics. 2008 Feb;8(4):832-51. doi: 10.1002/pmic.200700650. Proteomics. 2008. PMID: 18297654 Review.
-
Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors.Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18928-33. doi: 10.1073/pnas.0606379103. Epub 2006 Nov 30. Proc Natl Acad Sci U S A. 2006. PMID: 17138671 Free PMC article.
-
Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.J Vis Exp. 2017 Jan 26;(119):55236. doi: 10.3791/55236. J Vis Exp. 2017. PMID: 28190026 Free PMC article.
-
Affinity-mass spectrometry approaches for elucidating structures and interactions of protein-ligand complexes.Adv Exp Med Biol. 2014;806:129-51. doi: 10.1007/978-3-319-06068-2_7. Adv Exp Med Biol. 2014. PMID: 24952182 Review.
-
Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics.Expert Rev Proteomics. 2006 Dec;3(6):611-9. doi: 10.1586/14789450.3.6.611. Expert Rev Proteomics. 2006. PMID: 17181475 Review.
Cited by
-
Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom.ISME J. 2021 Aug;15(8):2336-2350. doi: 10.1038/s41396-021-00928-8. Epub 2021 Mar 1. ISME J. 2021. PMID: 33649555 Free PMC article.
-
Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use.Proc Natl Acad Sci U S A. 2012 May 8;109(19):E1173-82. doi: 10.1073/pnas.1121198109. Epub 2012 Apr 18. Proc Natl Acad Sci U S A. 2012. PMID: 22517752 Free PMC article.
-
In Vivo Biotinylation of the Toxoplasma Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis.mBio. 2016 Aug 2;7(4):e00808-16. doi: 10.1128/mBio.00808-16. mBio. 2016. PMID: 27486190 Free PMC article.
-
The Rpd3 core complex is a chromatin stabilization module.Curr Biol. 2012 Jan 10;22(1):56-63. doi: 10.1016/j.cub.2011.11.042. Epub 2011 Dec 15. Curr Biol. 2012. PMID: 22177115 Free PMC article.
-
A novel histone fold domain-containing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression.Genes Dev. 2009 Dec 15;23(24):2818-23. doi: 10.1101/gad.1846409. Genes Dev. 2009. PMID: 20008933 Free PMC article.
References
-
- Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. Nat Biotechnol. 1999;17:1030–1032. - PubMed
-
- Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Crucial CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Nature. 2002;415:141–147. - PubMed
-
- Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson L, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M. Nature. 2002;415:180–183. - PubMed
-
- Einhauer A, Jungbauer A. J Chromatogr A. 2001;921:25–30. - PubMed
-
- von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P. Nature. 2002;417:399–403. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
