Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation

Biophys J. 1991 Mar;59(3):722-8. doi: 10.1016/S0006-3495(91)82285-8.


Membrane patches from chick skeletal muscle were stretched by applying controlled suction or pressure to the pipette. From images of the patch, the patch dimensions (area and radius of curvature) were computed by nonlinear regression of the images to a geometric model. With no applied pressure, patch membranes are nearly planar and normal to the wall of the pipette. With increasing pressure gradients, the patch bulges, the radius of curvature decreases, and the area increases. The patch capacitance changes in exact proportion to the change in area at a rate of 0.7 microF/cm2. The increase in area is due to a flow of lipid (with perhaps small amounts of diffusible protein) along the walls of the pipette into the patch. The flow is reversible with a relaxation of the pressure gradient. The area elastic constant of the membrane is approximately 50 dyn/cm, insensitive to cytochalasin B and probably represents the elasticity of the underlying spectrin/dystrophin network. Simultaneous measurements of stretch activated (SA) ion channel activity in the patch showed that the sensitivity of channels from different patches, although different when calculated as a function of applied pressure, was the same when calculated as a function of tension. Because patch lipid is free to flow, and hence stress-free in the steady state, SA channels must be activated by tension in the cytoskeleton.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biophysical Phenomena
  • Biophysics
  • Cytoskeleton / metabolism
  • Electric Conductivity
  • Ion Channels / metabolism*
  • Membranes / metabolism
  • Muscles / metabolism
  • Pressure
  • Stress, Mechanical


  • Ion Channels