Resilient machines through continuous self-modeling
- PMID: 17110570
- DOI: 10.1126/science.1133687
Resilient machines through continuous self-modeling
Abstract
Animals sustain the ability to operate after injury by creating qualitatively different compensatory behaviors. Although such robustness would be desirable in engineered systems, most machines fail in the face of unexpected damage. We describe a robot that can recover from such change autonomously, through continuous self-modeling. A four-legged machine uses actuation-sensation relationships to indirectly infer its own structure, and it then uses this self-model to generate forward locomotion. When a leg part is removed, it adapts the self-models, leading to the generation of alternative gaits. This concept may help develop more robust machines and shed light on self-modeling in animals.
Comment in
-
Computer science. What do robots dream of?Science. 2006 Nov 17;314(5802):1093-4. doi: 10.1126/science.1135929. Science. 2006. PMID: 17110560 No abstract available.
-
To sleep, perchance to dream.Science. 2007 Mar 2;315(5816):1219-20; author reply 1219-20. doi: 10.1126/science.315.5816.1219b. Science. 2007. PMID: 17332391 No abstract available.
-
Prototype resilient, self-modeling robots.Science. 2007 May 4;316(5825):688; author reply 688. doi: 10.1126/science.316.5825.688c. Science. 2007. PMID: 17478699 No abstract available.
Similar articles
-
Self discovery enables robot social cognition: are you my teacher?Neural Netw. 2010 Oct-Nov;23(8-9):1113-24. doi: 10.1016/j.neunet.2010.07.009. Epub 2010 Aug 8. Neural Netw. 2010. PMID: 20732790
-
Robotics: self-reproducing machines.Nature. 2005 May 12;435(7039):163-4. doi: 10.1038/435163a. Nature. 2005. PMID: 15889080
-
Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1326-46. doi: 10.1109/TSMCB.2008.925749. IEEE Trans Syst Man Cybern B Cybern. 2008. PMID: 18784015
-
Self-organization, embodiment, and biologically inspired robotics.Science. 2007 Nov 16;318(5853):1088-93. doi: 10.1126/science.1145803. Science. 2007. PMID: 18006736 Review.
-
Emergence of structured interactions: from a theoretical model to pragmatic robotics.Neural Netw. 2009 Mar;22(2):116-25. doi: 10.1016/j.neunet.2009.01.005. Epub 2009 Jan 30. Neural Netw. 2009. PMID: 19243912 Review.
Cited by
-
Deep kinematic inference affords efficient and scalable control of bodily movements.Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2309058120. doi: 10.1073/pnas.2309058120. Epub 2023 Dec 12. Proc Natl Acad Sci U S A. 2023. PMID: 38085784
-
A review on self-healing featured soft robotics.Front Robot AI. 2023 Oct 26;10:1202584. doi: 10.3389/frobt.2023.1202584. eCollection 2023. Front Robot AI. 2023. PMID: 37953963 Free PMC article. Review.
-
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind.Anim Cogn. 2023 Nov;26(6):1865-1891. doi: 10.1007/s10071-023-01780-3. Epub 2023 May 19. Anim Cogn. 2023. PMID: 37204591 Free PMC article. Review.
-
Biological Robots: Perspectives on an Emerging Interdisciplinary Field.Soft Robot. 2023 Aug;10(4):674-686. doi: 10.1089/soro.2022.0142. Epub 2023 Apr 20. Soft Robot. 2023. PMID: 37083430 Free PMC article.
-
Editorial: Novel methods in embodied and enactive AI and cognition.Front Neurorobot. 2023 Mar 7;17:1162568. doi: 10.3389/fnbot.2023.1162568. eCollection 2023. Front Neurorobot. 2023. PMID: 36960196 Free PMC article. No abstract available.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
