Bacillus subtilis genome diversity
- PMID: 17114265
- PMCID: PMC1797320
- DOI: 10.1128/JB.01343-06
Bacillus subtilis genome diversity
Abstract
Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.
Figures
Similar articles
-
Ecology and genomics of Bacillus subtilis.Trends Microbiol. 2008 Jun;16(6):269-75. doi: 10.1016/j.tim.2008.03.004. Epub 2008 May 28. Trends Microbiol. 2008. PMID: 18467096 Free PMC article. Review.
-
Genetic Competence Drives Genome Diversity in Bacillus subtilis.Genome Biol Evol. 2018 Jan 1;10(1):108-124. doi: 10.1093/gbe/evx270. Genome Biol Evol. 2018. PMID: 29272410 Free PMC article.
-
Survey of genomic diversity among Enterococcus faecalis strains by microarray-based comparative genomic hybridization.Appl Environ Microbiol. 2007 Apr;73(7):2207-17. doi: 10.1128/AEM.01599-06. Epub 2007 Jan 12. Appl Environ Microbiol. 2007. PMID: 17220255 Free PMC article.
-
Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.PLoS One. 2016 Jun 3;11(6):e0156745. doi: 10.1371/journal.pone.0156745. eCollection 2016. PLoS One. 2016. PMID: 27258038 Free PMC article.
-
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.World J Microbiol Biotechnol. 2018 Sep 10;34(10):145. doi: 10.1007/s11274-018-2531-7. World J Microbiol Biotechnol. 2018. PMID: 30203131 Review.
Cited by
-
Cell-to-cell natural transformation in Bacillus subtilis facilitates large scale of genomic exchanges and the transfer of long continuous DNA regions.Nucleic Acids Res. 2023 May 8;51(8):3820-3835. doi: 10.1093/nar/gkad138. Nucleic Acids Res. 2023. PMID: 36912090 Free PMC article.
-
Genetic Evidences of Biosurfactant Production in Two Bacillus subtilis Strains MB415 and MB418 Isolated From Oil Contaminated Soil.Front Bioeng Biotechnol. 2022 Apr 26;10:855762. doi: 10.3389/fbioe.2022.855762. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35557861 Free PMC article.
-
Prevalence of Wheat Associated Bacillus spp. and Their Bio-Control Efficacy Against Fusarium Root Rot.Front Microbiol. 2022 Mar 3;12:798619. doi: 10.3389/fmicb.2021.798619. eCollection 2021. Front Microbiol. 2022. PMID: 35310393 Free PMC article.
-
Effects of DNA Topology on Transcription from rRNA Promoters in Bacillus subtilis.Microorganisms. 2021 Jan 1;9(1):87. doi: 10.3390/microorganisms9010087. Microorganisms. 2021. PMID: 33401387 Free PMC article.
-
RnhP is a plasmid-borne RNase HI that contributes to genome maintenance in the ancestral strain Bacillus subtilis NCIB 3610.Mol Microbiol. 2021 Jan;115(1):99-115. doi: 10.1111/mmi.14601. Epub 2020 Sep 25. Mol Microbiol. 2021. PMID: 32896031 Free PMC article.
References
-
- Binnewies, T. T., Y. Motro, P. F. Hallin, O. Lund, D. Dunn, T. La, D. J. Hampson, M. Bellgard, T. M. Wassenaar, and D. W. Ussery. 2006. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct. Integr. Genomics 6:165-185. - PubMed
-
- Branda, S. S., F. Chu, D. B. Kearns, R. Losick, and R. Kolter. 2006. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59:1229-1238. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
