5-HT1A receptors are involved in the anxiolytic effect of Delta9-tetrahydrocannabinol and AM 404, the anandamide transport inhibitor, in Sprague-Dawley rats

Eur J Pharmacol. 2007 Jan 26;555(2-3):156-63. doi: 10.1016/j.ejphar.2006.10.038. Epub 2006 Oct 21.


The mechanism mediating the effects of cannabinoids on anxiety-related responses appear to involve cannabinoid CB1 and non-CB1 receptors. However, other neurotransmitters may play a role in such effect. This study shows evidence of an interaction between endocannabinoid system and serotonin (5-HT), 1A receptor subtype on anxiety-like behavior in Sprague-Dawley rats. The exogenous cannabinoid agonist, Delta9-tetrahydrocannabinol (THC), and N-(4-hydroxyphenyl)-arachidonylamide, the anandamide transporter inhibitor (AM 404) were evaluated in the elevated plus maze test. THC (0.075-0.75 mg/kg i.p.), given 30 min and AM 404 (0.75-1.25 mg/kg i. p.), given 60 min before the test, exhibited a dose-response anxiolytic effect evaluated in terms of increase in the percentage of total entries and time spent in the open and decrease of total entries and time spent in the closed arms. The anxiolytic effect obtained with the maximal active dose of both THC (0.75 mg/kg) and AM 404 (1.25 mg/kg) was blocked by the 5-HT1A receptor antagonist, N-[2-[4-(2-methoxyphenyl) piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide dihydro chloride (WAY-100635 (300 microg/kg, s.c.), given 30 min before THC or 15 min before AM 404. The combination of an ineffective dose of THC (0.015 mg/kg) or AM 404 (0.015 mg/kg) on anxiety-related responses with an ineffective dose of the 5HT(1A) receptor agonist, 8-Hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) (7.5 microg/kg, i.p.), led to a synergistic effect. No interference with spontaneous motor activity, evaluated in an activity cage for 5 min, in rats given the drugs alone or in combination, was found. These data suggest that the anxiolytic effect produced by endo- and eso-cannabinoids is modulated by 5-HT1A receptors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 8-Hydroxy-2-(di-n-propylamino)tetralin / pharmacology
  • Animals
  • Anxiety / chemically induced*
  • Arachidonic Acids / metabolism
  • Arachidonic Acids / pharmacology*
  • Dronabinol / pharmacology*
  • Endocannabinoids
  • Exploratory Behavior / drug effects
  • Male
  • Piperazines / pharmacology
  • Polyunsaturated Alkamides / metabolism
  • Psychotropic Drugs / pharmacology*
  • Pyridines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Serotonin 5-HT1 Receptor Agonists*
  • Serotonin 5-HT1 Receptor Antagonists
  • Serotonin Antagonists / pharmacology
  • Serotonin Receptor Agonists / pharmacology


  • Arachidonic Acids
  • Endocannabinoids
  • Piperazines
  • Polyunsaturated Alkamides
  • Psychotropic Drugs
  • Pyridines
  • Serotonin 5-HT1 Receptor Agonists
  • Serotonin 5-HT1 Receptor Antagonists
  • Serotonin Antagonists
  • Serotonin Receptor Agonists
  • N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide
  • 8-Hydroxy-2-(di-n-propylamino)tetralin
  • Dronabinol
  • anandamide
  • N-(4-hydroxyphenyl)arachidonylamide