Bayesian comparison of spatially regularised general linear models
- PMID: 17133400
- PMCID: PMC6871431
- DOI: 10.1002/hbm.20327
Bayesian comparison of spatially regularised general linear models
Abstract
In previous work (Penny et al., [2005]: Neuroimage 24:350-362) we have developed a spatially regularised General Linear Model for the analysis of functional magnetic resonance imaging data that allows for the characterisation of regionally specific effects using Posterior Probability Maps (PPMs). In this paper we show how it also provides an approximation to the model evidence. This is important as it is the basis of Bayesian model comparison and provides a unified framework for Bayesian Analysis of Variance, Cluster of Interest analyses and the principled selection of signal and noise models. We also provide extensions that implement spatial and anatomical regularisation of noise process parameters.
In previous work (Penny et al., [2005]: Neuroimage 24:350–362) we have developed a spatially regularised General Linear Model for the analysis of functional magnetic resonance imaging data that allows for the characterisation of regionally specific effects using Posterior Probability Maps (PPMs). In this paper we show how it also provides an approximation to the model evidence. This is important as it is the basis of Bayesian model comparison and provides a unified framework for Bayesian Analysis of Variance, Cluster of Interest analyses and the principled selection of signal and noise models. We also provide extensions that implement spatial and anatomical regularisation of noise process parameters. Hum Brain Mapp 2007. © 2006 Wiley‐Liss, Inc.
(c) 2006 Wiley-Liss, Inc.
Figures
Similar articles
-
Bayesian fMRI data analysis with sparse spatial basis function priors.Neuroimage. 2007 Feb 1;34(3):1108-25. doi: 10.1016/j.neuroimage.2006.10.005. Epub 2006 Dec 5. Neuroimage. 2007. PMID: 17157034
-
Analysis of FMRI data with drift: modified general linear model and Bayesian estimator.IEEE Trans Biomed Eng. 2008 May;55(5):1504-11. doi: 10.1109/TBME.2008.918563. IEEE Trans Biomed Eng. 2008. PMID: 18440896
-
A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI.Neuroimage. 2008 Jul 1;41(3):941-69. doi: 10.1016/j.neuroimage.2008.02.017. Epub 2008 Feb 26. Neuroimage. 2008. PMID: 18439839
-
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.Comput Math Methods Med. 2016;2016:3279050. doi: 10.1155/2016/3279050. Epub 2016 Mar 1. Comput Math Methods Med. 2016. PMID: 27034708 Free PMC article. Review.
-
Human cortical areas underlying the perception of optic flow: brain imaging studies.Int Rev Neurobiol. 2000;44:269-92. doi: 10.1016/s0074-7742(08)60746-1. Int Rev Neurobiol. 2000. PMID: 10605650 Review.
Cited by
-
Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses.Hum Brain Mapp. 2013 Mar;34(3):501-18. doi: 10.1002/hbm.21452. Epub 2011 Nov 28. Hum Brain Mapp. 2013. PMID: 22121048 Free PMC article.
-
Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI.Neuroimage. 2010 Jan 15;49(2):1496-509. doi: 10.1016/j.neuroimage.2009.09.011. Epub 2009 Sep 22. Neuroimage. 2010. PMID: 19778619 Free PMC article.
-
Quantitative assessment of inter-individual variability in fMRI-based human brain atlas.Quant Imaging Med Surg. 2021 Feb;11(2):810-822. doi: 10.21037/qims-20-404. Quant Imaging Med Surg. 2021. PMID: 33532279 Free PMC article.
-
Noncanonical spike-related BOLD responses in focal epilepsy.Hum Brain Mapp. 2008 Mar;29(3):329-45. doi: 10.1002/hbm.20389. Hum Brain Mapp. 2008. PMID: 17510926 Free PMC article.
-
Efficient posterior probability mapping using Savage-Dickey ratios.PLoS One. 2013;8(3):e59655. doi: 10.1371/journal.pone.0059655. Epub 2013 Mar 22. PLoS One. 2013. PMID: 23533640 Free PMC article.
References
-
- Ashburner J, Friston KJ ( 2003a): Image segmentation In: Frackowiak RSJ, Friston KJ, Frith C, Dolan R, Friston KJ, Price CJ, Zeki S, Ashburner J, Penny WD, editors. Human Brain Function, 2nd ed. Academic Press.
-
- Ashburner J, Friston KJ ( 2003b): Spatial normalization using basis functions In: Frackowiak RSJ, Friston KJ, Frith C, Dolan R, Friston KJ, Price CJ, Zeki S, Ashburner J, Penny WD, editors. Human Brain Function, 2nd ed. London: Academic Press.
-
- Auranen T, Nummenmaa A, Hammalainen M, Jaaskelainen I, Lampinen J, Vehtari A, Sams M ( 2005): Bayesian analysis of the neuromagnetic inverse problem with lp norm priors. Neuroimage 26(3): 870–884. - PubMed
-
- Beal M ( 2003): Variational algorithms for approximate Bayesian inference. PhD thesis, Gatsby Computational Neuroscience Unit, University College London.
-
- Beal M, Ghahraman Z ( 2003): The variational Bayesian EM algorithms for incomplete data: With application to scoring graphical model structures In: Bernardo J, Bayarri M, Berger J, Dawid A, editors. Bayesian Statistics 7. Cambridge University Press.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
