High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation

Plant Biotechnol J. 2005 Nov;3(6):555-69. doi: 10.1111/j.1467-7652.2005.00146.x.

Abstract

Corn is one of the major crops in the world, but its low lysine content is often problematic for animal consumption. While exogenous lysine supplementation is still the most common solution for today's feed corn, high-lysine corn has been developed through genetic research and biotechnology. Reducing the lysine-poor seed storage proteins, zeins, or expressing a deregulated lysine biosynthetic enzyme, CordapA, has shown increased total lysine or free lysine content in the grains of modified corn plants, respectively. Here, by combining these two approaches through genetic crosses, the total lysine content has more than doubled in F1 progeny. We also observe a synergy between the transgenic zein reduction and the enhanced lysine biosynthesis by CordapA expression. The zein reduction plants are found to accumulate higher levels of aspartate, asparagine and glutamate, and therefore, provide excess precursors for the enhanced lysine biosynthesis.