Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar 1;73(4):631-40.
doi: 10.1016/j.cardiores.2006.11.005. Epub 2006 Nov 10.

Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart

Affiliations
Review

Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart

Lars S Maier et al. Cardiovasc Res. .

Abstract

Calcium (Ca(2+)) is the central second messenger in the translation of electrical signals into mechanical activity of the heart. This highly coordinated process, termed excitation-contraction coupling or ECC, is based on Ca(2+)-induced Ca(2+) release from the sarcoplasmic reticulum (SR). In recent years it has become increasingly clear that several Ca(2+)-dependent proteins contribute to the fine tuning of ECC. One of these is the Ca(2+)/calmodulin-dependent protein kinase (CaMK) of which CaMKII is the predominant cardiac isoform. During ECC CaMKII phosphorylates several Ca(2+) handling proteins with multiple functional consequences. CaMKII may also be co-localized to distinct target proteins. CaMKII expression as well as activity are reported to be increased in heart failure and CaMKII overexpression can exert distinct and novel effects on ECC in the heart and in isolated myocytes of animals. In the present review we summarize important aspects of the role of CaMKII in ECC with an emphasis on recent novel findings.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances