Wavefront sensorless adaptive optics for large aberrations

Opt Lett. 2007 Jan 1;32(1):5-7. doi: 10.1364/ol.32.000005.


In some adaptive optics systems the aberration is determined not by using a wavefront sensor but by sequential optimization of the adaptive correction element. Efficient schemes for the control of such systems are essential if they are to be effective. A scheme is introduced that permits the efficient measurement of large amplitude wavefront aberrations that are represented by an appropriate series of modes. This scheme uses an optimization metric based on the root-mean-square spot radius (or focal spot second moment) and an aberration expansion using polynomials suited to the representation of lateral aberrations. Experimental correction of N aberration modes is demonstrated with a minimum of N+1 photodetector measurements. The geometrical optics basis means that the scheme can be extended to arbitrarily large aberrations.