Chemical versus mechanical bioerosion of coral reefs by boring sponges--lessons from Pione cf. vastifica

J Exp Biol. 2007 Jan;210(Pt 1):91-6. doi: 10.1242/jeb.02627.

Abstract

Bioerosion by boring sponges is an important mechanism shaping the structure of coral reefs all around the world. To determine the excavation rate by boring sponges, we developed a system in which chemical and mechanical boring rates [calcium carbonate (CaCO(3)) dissolution and chip production, respectively] were measured simultaneously in experimental tanks containing reefal rock inhabited by a boring sponge. Pione cf. vastifica (Hancock 1849) was chosen as a model species to study the erosion rate of boring sponges. It is an abundant species in the coral reefs of the Nature Reserve Reef, Elat, Gulf of Aqaba, northern Red Sea, reaching maximum abundance at 25-30 m. The rate of chemical bioerosion was determined from the increase in tank-seawater alkalinity over time, and the mechanical bioerosion rate was estimated from the total amount of CaCO(3) chips produced over the same time interval. The measured bioerosion rate of P. cf. vastifica was 2.3 g m(-2) sponge day(-1), showing seasonal but not diurnal variations, suggesting that the zooxanthellae harboring the sponge have no effect on its boring rate. The experiments indicated clearly that per each mass of chips that P. cf. vastifica produces during its boring activity, it dissolves three masses of reef CaCO(3) framework. Assuming that some additional boring sponges can use a similar strategy of bioerosion, these findings suggest that chips, the most obvious erosion products of boring sponges, represent only a small fraction of boring sponge bioerosion capacity.

MeSH terms

  • Animals
  • Anthozoa*
  • Ecosystem*
  • Porifera / anatomy & histology
  • Porifera / metabolism*