Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

Theor Biol Med Model. 2006 Dec 15:3:41. doi: 10.1186/1742-4682-3-41.

Abstract

Background: Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes.

Results: We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme.

Conclusion: Convenience kinetics can be used to translate a biochemical network--manually or automatically--into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Energy Metabolism*
  • Enzyme Activation
  • Enzymes / metabolism
  • Kinetics
  • Models, Biological*
  • Thermodynamics*

Substances

  • Enzymes