This work compares the three most common analytical methods for determination of inorganic arsenic and its metabolites in urine: high performance liquid chromatography coupled to either inductively coupled plasma mass spectrometry or atomic fluorescence spectrometry via hydride generation (high performance liquid chromatography-hydride generation-inductively coupled plasma mass spectrometry (HPLC-HG-ICPMS) and HPLC-HG-atomic fluorescence spectrometry (AFS), respectively) and atomic absorption spectrometry coupled to HG (HG-atomic absorption spectrometry (AAS)). This was done with the focus to find alternatives to ICPMS, the investment and running costs of which are rather high. Between-laboratory comparison of HPLC-HG-ICPMS and HPLC-HG-AFS showed good agreement for inorganic arsenic, methylarsonate (MA) and dimethylarsinate (DMA) (R(2)=0.91, R(2)=0.92 and R(2)=0.90, respectively, N=86). Within-laboratory comparisons of HPLC-HG-AFS, HPLC-HG-ICPMS and HG-AAS showed good agreement for all arsenic species and the sum of inorganic arsenic and its metabolites in urine (HPLC-HG-ICPMS versus HPLC-HG-AFS: R(2)=0.95; HG-AAS versus HPLC-HG-AFS: R(2)=0.95 and HPLC-HG-ICPMS versus HG-AAS: R(2)=0.97; N=89). HPLC-HG-AFS was found to be a simple, but high quality alternative to HPLC-HG-ICPMS for the speciation and quantification of inorganic arsenic and its metabolites in urine at arsenic concentrations above 10microgL(-1). Because of its considerably lower costs compared to HPLC-HG-ICPMS, it may be a good alternative in laboratories where the high cost of ICPMS is not justified in relation to the intended use of the instrument.