Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch
- PMID: 17175531
- PMCID: PMC1802621
- DOI: 10.1093/nar/gkl1094
Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch
Abstract
Riboswitches are highly structured elements in the 5'-untranslated regions (5'-UTRs) of messenger RNA that control gene expression by specifically binding to small metabolite molecules. They consist of an aptamer domain responsible for ligand binding and an expression platform. Ligand binding in the aptamer domain leads to conformational changes in the expression platform that result in transcription termination or abolish ribosome binding. The guanine riboswitch binds with high-specificity to guanine and hypoxanthine and is among the smallest riboswitches described so far. The X-ray-structure of its aptamer domain in complex with guanine/hypoxanthine reveals an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base pairing interactions. We analyzed the conformational transitions of the aptamer domain induced by binding of hypoxanthine using high-resolution NMR-spectroscopy in solution. We found that the long-range base pairing interactions are already present in the free RNA and preorganize its global fold. The ligand binding core region is lacking hydrogen bonding interactions and therefore likely to be unstructured in the absence of ligand. Mg2+-ions are not essential for ligand binding and do not change the structure of the RNA-ligand complex but stabilize the structure at elevated temperatures. We identified a mutant RNA where the long-range base pairing interactions are disrupted in the free form of the RNA but form upon ligand binding in an Mg2+-dependent fashion. The tertiary interaction motif is stable outside the riboswitch context.
Figures
Similar articles
-
Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.Nucleic Acids Res. 2010 Jul;38(12):4143-53. doi: 10.1093/nar/gkq138. Epub 2010 Mar 3. Nucleic Acids Res. 2010. PMID: 20200045 Free PMC article.
-
Mutational analysis of the purine riboswitch aptamer domain.Biochemistry. 2007 Nov 20;46(46):13297-309. doi: 10.1021/bi700410g. Epub 2007 Oct 26. Biochemistry. 2007. PMID: 17960911 Free PMC article.
-
Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.J Mol Biol. 2006 Jun 9;359(3):754-68. doi: 10.1016/j.jmb.2006.04.003. Epub 2006 Apr 21. J Mol Biol. 2006. PMID: 16650860
-
Structural studies of the purine and SAM binding riboswitches.Cold Spring Harb Symp Quant Biol. 2006;71:259-68. doi: 10.1101/sqb.2006.71.015. Cold Spring Harb Symp Quant Biol. 2006. PMID: 17381305 Review.
-
The intricate world of riboswitches.Curr Opin Microbiol. 2007 Apr;10(2):176-81. doi: 10.1016/j.mib.2007.03.006. Epub 2007 Mar 23. Curr Opin Microbiol. 2007. PMID: 17383225 Free PMC article. Review.
Cited by
-
Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch.Commun Biol. 2022 Oct 22;5(1):1120. doi: 10.1038/s42003-022-04096-z. Commun Biol. 2022. PMID: 36273041 Free PMC article.
-
NMR Structures and Dynamics in a Prohead RNA Loop that Binds Metal Ions.J Phys Chem Lett. 2016 Oct 6;7(19):3841-3846. doi: 10.1021/acs.jpclett.6b01465. Epub 2016 Sep 19. J Phys Chem Lett. 2016. PMID: 27631837 Free PMC article.
-
Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold.RNA. 2009 Nov;15(11):1949-64. doi: 10.1261/rna.1889509. Epub 2009 Sep 9. RNA. 2009. PMID: 19741022 Free PMC article. Review.
-
Conformational dynamics of the tetracycline-binding aptamer.Nucleic Acids Res. 2012 Feb;40(4):1807-17. doi: 10.1093/nar/gkr835. Epub 2011 Nov 3. Nucleic Acids Res. 2012. PMID: 22053085 Free PMC article.
-
Comprehensive profiling of the ligand binding landscapes of duplexed aptamer families reveals widespread induced fit.Nat Commun. 2018 Jan 24;9(1):343. doi: 10.1038/s41467-017-02556-3. Nat Commun. 2018. PMID: 29367662 Free PMC article.
References
-
- Hermann T., Patel D.J. Adaptive recognition by nucleic acid aptamers. Science. 2000;287:820–825. - PubMed
-
- Nonin S., Jiang F., Patel D.J. Imino proton exchange and base-pair kinetics in the AMP–RNA aptamer complex. J. Mol. Biol. 1997;268:359–374. - PubMed
-
- Jucker F.M., Phillips R.M., McCallum S.A., Pardi A. Role of a heterogeneous free state in the formation of a specific RNA–theophylline complex. Biochemistry. 2003;42:2560–2567. - PubMed
-
- Patel D.J., Suri A.K., Jiang F., Jiang L., Fan P., Kumar R.A., Nonin S. Structure, recognition and adaptive binding in RNA aptamer complexes. J. Mol. Biol. 1997;272:645–664. - PubMed
-
- Mandal M., Boese B., Barrick J.E., Winkler W.C., Breaker R.R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell. 2003;113:577–586. - PubMed
