DNA synthesis precedes gliotoxin-induced apoptosis

Cell Death Differ. 1995 Jul;2(3):201-10.

Abstract

The toxin gliotoxin induces apoptosis or programmed cell death in a variety of immune cells including thymocytes. Apoptosis induced by gliotoxin in thymocytes is unaffected by protein synthesis inhibitors nor is it associated with early changes in intracellular calcium levels (Beaver and Waring, 1994). This work shows that the cell lines P815 and WEHI7 and murine thymocytes when treated with gliotoxin show an early incorporation of tritiated thymidine over the concentration range which causes apoptosis. Proliferating cell nuclear antigen (PCNA), a marker for S phase, is elevated in cells following gliotoxin treatment and S phase DNA content is increased. Thymidine incorporation is inhibited by hydroxyurea, an inhibitor of replicative DNA synthesis not repair. Free radical scavangers have no effect on apoptosis induced by gliotoxin in thymocytes. Hydrogen peroxide-treated cells showed no enhanced thymidine incorporation and no apoptosis. Thus oxidative stress does not appear to be a factor in gliotoxin-induced apoptosis. Thymocytes treated with gliotoxin show increased phosphorylation of a 16.3 kDa protein, and apoptosis is inhibited by the tyrosine kinase inhibitor genistein, which also inhibited the increased thymidine incorporation in P815 cells. We conclude that one mechanism by which gliotoxin can cause apoptosis may be the induction of inappropriate entry of cells into the cell cycle followed by death.