Concanavalin A-induced apoptosis in murine macrophages through a Ca(2+)- independent pathway

Cell Death Differ. 1996 Jul;3(3):307-14.

Abstract

Concanavalin A (ConA), normally a mitogen of T lymphocytes, was found to induce apoptosis or programmed cell death in murine peritoneal macrophages. The following observations support this assertion: 1) incubation of peritoneal macrophages or cultured PU5-1.8 macrophage cells with ConA caused a dose- and time-dependent reduction of mitochondrial dehy-drogenase activity as measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 2) treatment of cells with ConA induced formation of apoptotic bodies as seen under the confocal laser scanning microscope, 3) challenge of cells with ConA produced a considerable amount of cell debris with DNA content next to G0 phase as revealed by flow cytometry and 4) ConA was able to elicit DNA fragmentation in these cells. The involvement of Ca(2+) in mediating the apoptosis was studied in single cells by confocal laser scanning microscope using the Ca(2+) fluorescence dye, fluo-3. Our results show that ConA induced an immediate rise of intracellular free Ca(2+) concentration as well as opening of Ca(2+) channels on cell surface. But when the cells were treated with 1,2-bis(o-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid/AM (BAPTA/AM), a Ca(2+) chelator, to buffer the rise of internal Ca(2+), ConA still caused DNA fragmentation. Furthermore, injection of Ca(2+) into the cell with ionomycin had no stimulatory effect on DNA fragmentation. These results suggest that Ca(2+) changes induced by ConA are not a prerequisite for apoptosis in macrophages.