Production of authentic SARS-CoV M(pro) with enhanced activity: application as a novel tag-cleavage endopeptidase for protein overproduction
- PMID: 17189639
- PMCID: PMC7094453
- DOI: 10.1016/j.jmb.2006.11.073
Production of authentic SARS-CoV M(pro) with enhanced activity: application as a novel tag-cleavage endopeptidase for protein overproduction
Abstract
The viral proteases have proven to be the most selective and useful for removing the fusion tags in fusion protein expression systems. As a key enzyme in the viral life-cycle, the main protease (M(pro)) is most attractive for drug design targeting the SARS coronavirus (SARS-CoV), the etiological agent responsible for the outbreak of severe acute respiratory syndrome (SARS) in 2003. In this study, SARS-CoV M(pro) was used to specifically remove the GST tag in a new fusion protein expression system. We report a new method to produce wild-type (WT) SARS-CoV M(pro) with authentic N and C termini, and compare the activity of WT protease with those of three different types of SARS-CoV M(pro) with additional residues at the N or C terminus. Our results show that additional residues at the N terminus, but not at the C terminus, of M(pro) are detrimental to enzyme activity. To explain this, the crystal structures of WT SARS-CoV M(pro) and its complex with a Michael acceptor inhibitor were determined to 1.6 Angstroms and 1.95 Angstroms resolution respectively. These crystal structures reveal that the first residue of this protease is important for sustaining the substrate-binding pocket and inhibitor binding. This study suggests that SARS-CoV M(pro) could serve as a new tag-cleavage endopeptidase for protein overproduction, and the WT SARS-CoV M(pro) is more appropriate for mechanistic characterization and inhibitor design.
Figures
Similar articles
-
Optimization of the expression of the main protease from SARS-CoV-2.Protein Expr Purif. 2023 Mar;203:106208. doi: 10.1016/j.pep.2022.106208. Epub 2022 Nov 18. Protein Expr Purif. 2023. PMID: 36403706 Free PMC article.
-
Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):747-55. doi: 10.1107/S0907444913001315. Epub 2013 Apr 11. Acta Crystallogr D Biol Crystallogr. 2013. PMID: 23633583 Free PMC article.
-
Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease.Antiviral Res. 2011 Nov;92(2):204-12. doi: 10.1016/j.antiviral.2011.08.001. Epub 2011 Aug 11. Antiviral Res. 2011. PMID: 21854807 Free PMC article.
-
An overall picture of SARS coronavirus (SARS-CoV) genome-encoded major proteins: structures, functions and drug development.Curr Pharm Des. 2006;12(35):4539-53. doi: 10.2174/138161206779010459. Curr Pharm Des. 2006. PMID: 17168760 Review.
-
Activation and maturation of SARS-CoV main protease.Protein Cell. 2011 Apr;2(4):282-90. doi: 10.1007/s13238-011-1034-1. Epub 2011 Apr 28. Protein Cell. 2011. PMID: 21533772 Free PMC article. Review.
Cited by
-
Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2.J Mol Graph Model. 2020 Dec;101:107717. doi: 10.1016/j.jmgm.2020.107717. Epub 2020 Aug 18. J Mol Graph Model. 2020. PMID: 32861974 Free PMC article.
-
Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities.Protein J. 2024 Aug;43(4):639-655. doi: 10.1007/s10930-024-10223-y. Epub 2024 Jul 28. Protein J. 2024. PMID: 39068633 Review.
-
Production of autolysis-proof Kex2 protease from Candida albicans in Saccharomyces cerevisiae for in vitro processing of fusion proteins.Appl Microbiol Biotechnol. 2022 Nov;106(21):7063-7072. doi: 10.1007/s00253-022-12212-6. Epub 2022 Oct 5. Appl Microbiol Biotechnol. 2022. PMID: 36195703
-
Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2.Arch Pharm (Weinheim). 2022 May;355(5):e2100360. doi: 10.1002/ardp.202100360. Epub 2022 Mar 4. Arch Pharm (Weinheim). 2022. PMID: 35244237 Free PMC article. Review.
-
Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening.PLoS One. 2022 Jun 30;17(6):e0269563. doi: 10.1371/journal.pone.0269563. eCollection 2022. PLoS One. 2022. PMID: 35771802 Free PMC article.
References
-
- Edwards A.M., Arrowsmith C.H., Christendat D., Dharamsi A., Friesen J.D., Greenblatt J.F., Vedadi M. Protein production: feeding the crystallographers and NMR spectroscopists. Nature Struct. Biol. 2000;7:970–972. (Suppl.) - PubMed
-
- Bucher M.H., Evdokimov A.G., Waugh D.S. Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta Crystallog. sect. D. 2002;58:392–397. - PubMed
-
- Walker P.A., Leong L.E., Ng P.W., Tan S.H., Waller S., Murphy D., Porter A.G. Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Biotechnology (NY) 1994;12:601–605. - PubMed
-
- Wang Q.M., Johnson R.B., Cox G.A., Villarreal E.C., Loncharich R.J. A continuous colorimetric assay for rhinovirus-14 3C protease using peptide p-nitroanilides as substrates. Anal. Biochem. 1997;252:238–245. - PubMed
-
- Stols L., Gu M., Dieckman L., Raffen R., Collart F.R., Donnelly M.I. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr. Purif. 2002;25:8–15. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
