Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer

Int J Radiat Oncol Biol Phys. 2007 Mar 1;67(3):709-19. doi: 10.1016/j.ijrobp.2006.09.046. Epub 2006 Dec 29.


Purpose: To compare the planning target volume (PTV) definitions for computed tomography (CT) vs. positron emission tomography (PET) in non-small-cell lung cancer (NSCLC).

Methods and materials: A total of 21 patients with NSCLC underwent three-dimensional conformal radiotherapy planning. All underwent a staging F-18 fluorodeoxyglucose-position emission tomography (18FDG-PET) scan and underwent treatment simulation using CT plus a separate planning 18FDG-PET scan. Three sets of target volumes were defined: Set 1, CT volumes (CT tumor + staging PET nodal disease); Set 2, PET volumes (planning PET tumor {gross tumor volume (GTV) = [(0.3069 x mean standardized uptake value) + 0.5853])}; Set 3, composite CT-PET volumes (fused CT-PET tumor). Sets 1 and 2 were compared using a matching index. Three-dimensional conformal radiotherapy plans were created using the Set 1 (CT) volumes; and coverage of the Set 3 (composite) volumes was evaluated. Separate three-dimensional conformal radiotherapy plans were designed for the Set 3 volumes.

Results: For the primary tumor GTV, the Set 1 (CT) volume was larger than the Set 2 (PET) volume in 48%, smaller in 33%, and equal in 19%. The mean matching index was 0.65 (35% CT-PET mismatch). Although quantitatively similar, the volumes differed qualitatively. The Set 3 (composite) volume was larger than either CT or PET alone in 62%, smaller in 24%, and equal in 14%. The dose-volume histogram parameters did not differ among the plans for Set 1 (CT) vs. Set 3 (composite) volumes. Small portions of the Set 3 PTV were significantly underdosed in 40% of cases using the CT-only plan.

Conclusion: Computed tomography and PET are complementary and should be obtained in the treatment position and fused to define the GTV for NSCLC. Although the quantitative absolute target volume is sometimes similar, the qualitative target locations can be substantially different, leading to underdosage of the target when planning is done using CT alone without PET fusion.

Publication types

  • Comparative Study
  • Evaluation Study
  • Review

MeSH terms

  • Carcinoma, Non-Small-Cell Lung* / diagnostic imaging
  • Carcinoma, Non-Small-Cell Lung* / radiotherapy
  • Fluorodeoxyglucose F18
  • Humans
  • Lung Neoplasms* / diagnostic imaging
  • Lung Neoplasms* / radiotherapy
  • Positron-Emission Tomography*
  • Radiopharmaceuticals / therapeutic use
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Conformal / methods
  • Tomography, X-Ray Computed*


  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18