The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis

Dev Biol. 2007 Mar 15;303(2):635-49. doi: 10.1016/j.ydbio.2006.12.004. Epub 2006 Dec 8.


In metazoans, many mRNAs needed for embryogenesis are produced during oogenesis and must be tightly regulated during the complex events of oocyte development. In C. elegans, translation of the Notch receptor GLP-1 is repressed during oogenesis and is then activated specifically in anterior cells of the early embryo. The KH domain protein GLD-1 represses glp-1 translation during early stages of meiosis, but the factors that repress glp-1 during late oogenesis are not known. Here, we provide evidence that the PUF domain protein PUF-5 and two nearly identical PUF proteins PUF-6 and PUF-7 function during a specific period of oocyte differentiation to repress glp-1 and other maternal mRNAs. Depletion of PUF-5 and PUF-6/7 together caused defects in oocyte formation and early embryonic cell divisions. Loss of PUF-5 and PUF-6/7 also caused inappropriate expression of GLP-1 protein in oocytes, but GLP-1 remained repressed in meiotic germ cells. PUF-5 and PUF-6/7 function was required directly or indirectly for translational repression through elements of the glp-1 3' untranslated region. Oogenesis and embryonic defects could not be rescued by loss of GLP-1 activity, suggesting that PUF-5 and PUF-6/7 regulate other mRNAs in addition to glp-1. PUF-5 and PUF-6/7 depletion, however, did not perturb repression of the maternal factors GLD-1 and POS-1, suggesting that subsets of maternal gene products may be regulated by distinct pathways. Interestingly, PUF-5 protein was detected exclusively during mid to late oogenesis but became undetectable prior to completion of oocyte differentiation. These results reveal a previously unknown maternal mRNA control system that is specific to late stages of oogenesis and suggest new functions for PUF family proteins in post-mitotic differentiation. Multiple sets of RNA-binding complexes function in different domains of the C. elegans germ line to maintain silencing of Notch/glp-1 and other mRNAs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 3' Untranslated Regions
  • Animals
  • Animals, Genetically Modified
  • Caenorhabditis elegans / embryology
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / growth & development*
  • Caenorhabditis elegans / metabolism*
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism*
  • Cell Division
  • Female
  • Gene Expression Regulation, Developmental
  • Genes, Helminth
  • Membrane Glycoproteins / genetics
  • Membrane Glycoproteins / metabolism
  • Models, Biological
  • Oogenesis / genetics
  • Oogenesis / physiology*
  • RNA Interference
  • RNA, Helminth / genetics
  • RNA, Helminth / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism*
  • Receptors, Notch


  • 3' Untranslated Regions
  • Caenorhabditis elegans Proteins
  • Glp-1 protein, C elegans
  • Membrane Glycoproteins
  • RNA, Helminth
  • RNA, Messenger
  • RNA-Binding Proteins
  • Receptors, Notch