Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;101(1):27-40.
doi: 10.1111/j.1471-4159.2006.04344.x. Epub 2007 Jan 4.

Early Gene Expression During Natural Spinal Cord Regeneration in the Salamander Ambystoma Mexicanum

Affiliations
Free article

Early Gene Expression During Natural Spinal Cord Regeneration in the Salamander Ambystoma Mexicanum

James R Monaghan et al. J Neurochem. .
Free article

Abstract

In contrast to mammals, salamanders have a remarkable ability to regenerate their spinal cord and recover full movement and function after tail amputation. To identify genes that may be associated with this greater regenerative ability, we designed an oligonucleotide microarray and profiled early gene expression during natural spinal cord regeneration in Ambystoma mexicanum. We sampled tissue at five early time points after tail amputation and identified genes that registered significant changes in mRNA abundance during the first 7 days of regeneration. A list of 1036 statistically significant genes was identified. Additional statistical and fold change criteria were applied to identify a smaller list of 360 genes that were used to describe predominant expression patterns and gene functions. Our results show that a diverse injury response is activated in concert with extracellular matrix remodeling mechanisms during the early acute phase of natural spinal cord regeneration. We also report gene expression similarities and differences between our study and studies that have profiled gene expression after spinal cord injury in rat. Our study illustrates the utility of a salamander model for identifying genes and gene functions that may enhance regenerative ability in mammals.

Similar articles

See all similar articles

Cited by 38 articles

See all "Cited by" articles

Publication types

MeSH terms

LinkOut - more resources

Feedback