Reference values and physiological characterization of a specific isolated pig kidney perfusion model

J Occup Med Toxicol. 2007 Jan 29:2:1. doi: 10.1186/1745-6673-2-1.

Abstract

Background: Models of isolated and perfused kidneys are used to study the effects of drugs, hazardous or toxic substances on renal functions. Since physiological and morphological parameters of small laboratory animal kidneys are difficult to compare to human renal parameters, porcine kidney perfusion models have been developed to simulate closer conditions to the human situation, but exact values of renal parameters for different collection and perfusion conditions have not been reported so far. If the organs could be used out of regular slaughtering processes animal experiments may be avoided.

Methods: To assess renal perfusion quality, we analyzed different perfusion settings in a standardized model of porcine kidney hemoperfusion with organs collected in the operating theatre (OP: groups A-D) or in a public abattoir (SLA: group E) and compared the data to in vivo measurements in living animals (CON). Experimental groups had defined preservation periods (0, 2 and 24 hrs), one with additional albumin in the perfusate (C) for edema reduction.

Results: Varying perfusion settings resulted in different functional values (mean +/- SD): blood flow (RBF [ml/min*100 g]: (A) 339.9 +/- 61.1; (C) 244.5 +/- 53.5; (D) 92.8 +/- 25.8; (E) 153.8 +/- 41.5); glomerular filtration (GFR [ml/min*100 g]: (CON) 76.1 +/- 6.2; (A) 59.2 +/- 13.9; (C) 25.0 +/- 10.6; (D) 1.6 +/- 1.3; (E) 16.3 +/- 8.2); fractional sodium reabsorption (RFNa [%] (CON) 99.8 +/- 0.1; (A) 82.3 +/- 8.1; (C) 86.8 +/- 10.3; (D) 38.4 +/- 24.5; (E) 88.7 +/- 5.8). Additionally the tubular coupling-ratio of Na-reabsorption/O2-consumption was determined (TNa/O2-cons [mmol-Na/mmol- O2] (CON) 30.1; (A) 42.0, (C) 80.6; (D) 17.4; (E) 23.8), exhibiting OP and SLA organs with comparable results.

Conclusion: In the present study functional values for isolated kidneys with different perfusion settings were determined to assess organ perfusion quality. It can be summarized that the hemoperfused porcine kidney can serve as a biological model with acceptable approximation to in vivo renal physiology, also if the organs originate from usual slaughtering processes.