Evaluation of two biodegradable nerve guides for the reconstruction of the rat sciatic nerve

Biomed Mater Eng. 2007;17(1):39-52.


The purpose of this study was to test in vivo two different nerve guides, one of PLGA made of a novel proportion (90:10) of the two polymers, Poly(L-lactide):Poly(glycolide), with (DL-lactide-epsilon-caprolactone) copolyester (Neurolac) tube, in promoting nerve regeneration across a 10 mm-gap of the rat sciatic nerve. Finally, end-to-end coaptation was performed. Motor and sensory functional recovery was assessed throughout the healing period of 20 weeks and the repaired nerves were processed for morphological analysis. Both motor and sensory functions improved significantly in all experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the end-to-end group. No significant differences were detected in the comparison between the two types of tubes. Compatible with results of functional tests, morphological analysis showed that axon regeneration occurred in both PLGA and Neurolac experimental groups but disclosed a different pattern of degradation of the two types of tubes with larger biodegradation of PLGA material by the end of 20 weeks. These results suggest that both types of biomaterial are a good substrate for preparing tubular nerve guides and the different pattern of degradation does not seem to influence the degree of nerve regeneration.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorbable Implants*
  • Animals
  • Guided Tissue Regeneration / methods*
  • Lactic Acid / chemistry
  • Male
  • Motor Activity
  • Nerve Regeneration*
  • Pain Measurement
  • Polyesters / chemistry
  • Polyglycolic Acid / chemistry
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polymers / chemistry
  • Rats
  • Rats, Sprague-Dawley
  • Sciatic Nerve / physiology*
  • Sciatic Nerve / ultrastructure


  • Polyesters
  • Polymers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • lactide-caprolactone copolymer