Background: Fine particulate air pollution has been linked to cardiovascular disease, but previous studies have assessed only mortality and differences in exposure between cities. We examined the association of long-term exposure to particulate matter of less than 2.5 microm in aerodynamic diameter (PM2.5) with cardiovascular events.
Methods: We studied 65,893 postmenopausal women without previous cardiovascular disease in 36 U.S. metropolitan areas from 1994 to 1998, with a median follow-up of 6 years. We assessed the women's exposure to air pollutants using the monitor located nearest to each woman's residence. Hazard ratios were estimated for the first cardiovascular event, adjusting for age, race or ethnic group, smoking status, educational level, household income, body-mass index, and presence or absence of diabetes, hypertension, or hypercholesterolemia.
Results: A total of 1816 women had one or more fatal or nonfatal cardiovascular events, as confirmed by a review of medical records, including death from coronary heart disease or cerebrovascular disease, coronary revascularization, myocardial infarction, and stroke. In 2000, levels of PM2.5 exposure varied from 3.4 to 28.3 microg per cubic meter (mean, 13.5). Each increase of 10 microg per cubic meter was associated with a 24% increase in the risk of a cardiovascular event (hazard ratio, 1.24; 95% confidence interval [CI], 1.09 to 1.41) and a 76% increase in the risk of death from cardiovascular disease (hazard ratio, 1.76; 95% CI, 1.25 to 2.47). For cardiovascular events, the between-city effect appeared to be smaller than the within-city effect. The risk of cerebrovascular events was also associated with increased levels of PM2.5 (hazard ratio, 1.35; 95% CI, 1.08 to 1.68).
Conclusions: Long-term exposure to fine particulate air pollution is associated with the incidence of cardiovascular disease and death among postmenopausal women. Exposure differences within cities are associated with the risk of cardiovascular disease.
2007 Massachusetts Medical Society