An inverse problem for reduced-encoding MRI velocimetry in potential flow

Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1100-3. doi: 10.1109/IEMBS.2004.1403356.


We propose a computational technique to reconstruct internal physiological flows described by sparse point-wise MRI velocity measurements. Assuming that the viscous forces in the flow are negligible, the incompressible flow field can be obtained from a velocity potential that satisfies Laplace's equation. A set of basis functions each satisfying Laplace's equation with appropriately defined boundary data is constructed using the finite-element method. An inverse problem is formulated where higher resolution boundary and internal velocity data are extracted from the point-wise MRI velocity measurements using a least-squares method. From the results we obtained with approximately 100 internal measurement points, the proposed reconstruction method is shown to be effective in filtering out the experimental noise at levels as high as 30%, while matching the reference solution within 2%. This allows the reconstruction of a high-resolution velocity field with limited MRI encoding.