Block-copolymer micro-emulsion with solvent-induced segregation

Langmuir. 2007 Feb 13;23(4):2117-25. doi: 10.1021/la0625704. Epub 2006 Dec 22.

Abstract

Reverse micelle formation of the poly(ethylene oxide)/poly(propylene oxide) block-copolymer (EO)13(PO)30(EO)13 (L64) in p-xylene was investigated as a function of water content and copolymer content, using small-angle neutron scattering (SANS). PEO/PPO block-copolymers are generally soluble in xylene but without forming aggregates. However, the effective block segregation increases dramatically upon addition of small amounts of water, and micelles form. The SANS data were analyzed using an absolute scale model fitting approach. This way, a detailed quantitative description of the system in terms of unimer concentration, micelle structure, and aggregation number as well as particle-particle interactions can be obtained. This approach throws light on very atypical features of the system as compared to standard amphiphilic systems. Data from samples measured along water-swelling lines with fixed EO/p-xylene-d10 molar ratios show that reverse micelles are formed at the water/EO molar ratio, W0 congruent with 0.2, independent of copolymer concentration. The majority of the block-copolymers are on a free monomer state (unimer state) at this W0. Increasing W0 above 0.2 only has a small effect on the micelle size. However, it does induce a strong increase of the total number of micelles and induce a corresponding decrease of the unimer concentration. On the other hand, increasing the overall copolymer concentration at fixed W0 gives rise to a significant decrease of the micelle size in terms of the micellar aggregation number. This observed behavior is totally different from what is normally observed for binary surfactant-solvent systems and droplet micro-emulsion systems, respectively. We believe that the atypical behavior is a result of the unusually weak segregation in the system, and we are not aware of previous discussions of the phenomenon for reverse micellar systems.

MeSH terms

  • Emulsions
  • Micelles
  • Polymers / chemistry*
  • Solutions
  • Solvents
  • Water / chemistry
  • Xylenes / chemistry

Substances

  • Emulsions
  • Micelles
  • Polymers
  • Solutions
  • Solvents
  • Xylenes
  • Water