NetPhosYeast: prediction of protein phosphorylation sites in yeast

Bioinformatics. 2007 Apr 1;23(7):895-7. doi: 10.1093/bioinformatics/btm020. Epub 2007 Feb 5.

Abstract

We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast--an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites in yeast.

Availability: The NetPhosYeast prediction service is available as a public web server at http://www.cbs.dtu.dk/services/NetPhosYeast/.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Binding Sites
  • Fungal Proteins / chemistry*
  • Fungal Proteins / metabolism*
  • Neural Networks, Computer*
  • Pattern Recognition, Automated / methods*
  • Phosphorylation*
  • Protein Binding
  • Sequence Analysis, Protein / methods*
  • Yeasts / metabolism*

Substances

  • Fungal Proteins