Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 129 (9), 2458-65

Thermodynamic Stability of Boron: The Role of Defects and Zero Point Motion

Affiliations

Thermodynamic Stability of Boron: The Role of Defects and Zero Point Motion

Michiel J van Setten et al. J Am Chem Soc.

Abstract

Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.

Similar articles

See all similar articles

Cited by 7 articles

See all "Cited by" articles

LinkOut - more resources

Feedback