Non-O1 Vibrio cholerae intestinal pathology and invasion in the removable intestinal tie adult rabbit diarrhea model

Infect Immun. 1992 Feb;60(2):435-42. doi: 10.1128/iai.60.2.435-442.1992.

Abstract

A modified removable intestinal tie adult rabbit diarrhea (RITARD) model was used to investigate the intestinal pathology, intestinal bacterial colonization, intestinal fluid volume, and onset of diarrhea caused by non-O1 Vibrio cholerae. Three strains of non-O1 V. cholerae were studied. RITARD rabbits challenged with 10(3) CFU of strain NRT36S (a strain previously shown to cause diarrhea in volunteers) developed grade 3 diarrhea at 48 to 72 h. The mean counts of non-O1 V. cholerae isolated were 9.3 +/- 0.07 and 8.7 +/- 0.7 CFU/g from the small and large intestines, respectively. Histologic examination showed necrosis of the luminal epithelium in the colon and mild inflammatory cell infiltration in the adjacent lamina propria. The severity and extent of intestinal damage by strain NRT36S was dose dependent. Higher doses of strain NRT36S caused severe necrotizing colitis and enteritis, with bacteremia and mortality at less than 24 h in RITARD rabbits challenged with 10(9) CFU and at less than 48 h in RITARD rabbits challenged with 10(4) CFU. Electron and light microscopy demonstrated invasion of NRT36S into the luminal epithelial cells of the intestine. Challenge of RITARD rabbits with non-O1 V. cholerae A-5 and 2076-79 (strains which did not cause diarrhea in volunteers) did not cause diarrhea or intestinal pathology. Intestinal colonization was transient: at 72 h postchallenge, animals inoculated with strain A-5 were culture negative, while only low numbers of strain 2076-79 were detectable (approximately 0.4 to 0.8 CFU/g). Our data highlight the utility of the RITARD model, when combined with appropriate pathologic and bacteriologic studies, for obtaining insights into pathophysiologic mechanisms of enteric disease by non-O1 V. cholerae. In agreement with volunteer studies, non-O1 V. cholerae NRT36S is clearly pathogenic in this model; direct cell invasion may play a role in its ability to cause illness.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bacterial Adhesion
  • Cholera / pathology
  • Diarrhea / etiology*
  • Diarrhea / pathology
  • Disease Models, Animal
  • Intestines / microbiology
  • Intestines / pathology*
  • Intestines / ultrastructure
  • Male
  • Rabbits
  • Vibrio cholerae / pathogenicity*