Mcl-1 is downregulated in cisplatin-induced apoptosis, and proteasome inhibitors restore Mcl-1 and promote survival in renal tubular epithelial cells

Am J Physiol Renal Physiol. 2007 Jun;292(6):F1710-7. doi: 10.1152/ajprenal.00505.2006. Epub 2007 Feb 20.

Abstract

Mcl-1 is an antiapoptotic member of the Bcl-2 family that plays an important role in cell survival. We demonstrate that proteasome-dependent regulation of Mcl-1 plays a critical role in renal tubular epithelial cell injury from cisplatin. Protein levels of Mcl-1 rapidly declined in a time-dependent manner following cisplatin treatment of LLC-PK(1) cells. However, mRNA levels of Mcl-1 were not altered following cisplatin treatment. Expression of other antiapoptotic members of the Bcl-2 family such as Bcl-2 and BclxL was not affected by cisplatin treatment. Cisplatin-induced loss of Mcl-1 occurs at the same time as the mitochondrial release of cytochrome c, activation of caspase-3, and initiation of apoptosis. Treatment of cells with cycloheximide, a protein synthesis inhibitor, revealed rapid turnover of Mcl-1. In addition, treatment with cycloheximide in the presence or absence of cisplatin demonstrated that cisplatin-induced loss of Mcl-1 results from posttranslational degradation rather than transcriptional inhibition. Overexpression of Mcl-1 protected cells from cisplatin-induced caspase-3 activation and apoptosis. Preincubating cells with the proteasome inhibitor MG-132 or lactacystin not only restored cisplatin-induced loss of Mcl-1 but also resulted in an accumulation of Mcl-1 that exceeded basal levels; however, Bcl-2 and BclxL levels did not change in response to MG-132 or lactacystin. The proteasome inhibitors effectively blocked cisplatin-induced mitochondrial release of cytochrome c, caspase-3 activation, and apoptosis. These studies suggest that proteasome regulation of Mcl-1 is crucial in the cisplatin-induced apoptosis via the mitochondrial apoptotic pathway and that Mcl-1 is an important therapeutic target in cisplatin injury to renal tubular epithelial cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / toxicity*
  • Apoptosis / drug effects*
  • Caspase 3 / metabolism
  • Cell Survival / drug effects
  • Cisplatin / toxicity*
  • Epithelial Cells / drug effects*
  • Fluorescent Antibody Technique
  • Kidney Tubules / cytology*
  • Kidney Tubules / drug effects
  • LLC-PK1 Cells
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Neoplasm Proteins / biosynthesis*
  • Proteasome Inhibitors*
  • Proto-Oncogene Proteins c-bcl-2 / biosynthesis*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Swine

Substances

  • Antineoplastic Agents
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Neoplasm Proteins
  • Proteasome Inhibitors
  • Proto-Oncogene Proteins c-bcl-2
  • Caspase 3
  • Cisplatin