Autophagy, mitochondria and cell death in lysosomal storage diseases

Autophagy. May-Jun 2007;3(3):259-62. doi: 10.4161/auto.3906. Epub 2007 May 23.


Lysosomal storage diseases (LSDs) are debilitating genetic conditions that frequently manifest as neurodegenerative disorders. They severely affect eye, motor and cognitive functions and, in most cases, abbreviate the lifespan. Postmitotic cells such as neurons and mononuclear phagocytes rich in lysosomes are most often affected by the accumulation of undegraded material. Cell death is well documented in parts of the brain and in other cells of LSD patients and animal models, although little is known about mechanisms by which death pathways are activated in these diseases, and not all cells exhibiting increased storage material are affected by cell death. Lysosomes are essential for maturation and completion of autophagy-initiated protein and organelle degradation. Moreover, accumulation of effete mitochondria has been documented in postmitotic cells whose lysosomal function is suppressed or in aging cells with lipofuscin accumulation. Based upon observations in the literature and our own data showing similar mitochondrial abnormalities in several LSDs, we propose a new model of cell death in LSDs. We suggest that the lysosomal deficiencies in LSDs inhibit autophagic maturation, leading to a condition of autophagic stress. The resulting accumulation of dysfunctional mitochondria showing impaired Ca2+ buffering increases the vulnerability of the cells to pro-apoptotic signals.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy*
  • Calcium / metabolism
  • Cell Death*
  • Humans
  • Lysosomal Storage Diseases / enzymology
  • Lysosomal Storage Diseases / metabolism*
  • Lysosomal Storage Diseases / pathology
  • Mice
  • Mitochondria / metabolism*
  • Mitochondria / ultrastructure


  • Calcium